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1. Introduction

Optimal with respect to accuracy methods for calculating singular integrals are
being actively developed presently. They represent an important field of computa-
tional mathematics. Asymptotically optimal and optimal with respect to order (to
accuracy and to complexity) algorithms for calculating singular integrals on closed
and open contours, and multidimensional singular integrals have been constructed
in [4-6] on Holder and Sobolev classes of functions.

In constructing optimal with respect to accuracy methods for calculating one-
dimensional, bisingular and multidimensional singular integrals, a general method,
proposed in monograph [4], was used. This method can be applied not only to
singular integrals but also to other integrals with moving singularities.

This method allows one to construct several asymptotically optimal and optimal
with respect to order and to accuracy algorithms for calculating hypersingular inte-
grals [7], the Poisson and Cauchy type integrals [8], and multidimensional Cauchy
type integrals.
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282 ILYA V. BOIKOV AND ALEXANDER G. RAMM

Although multidimensional weakly singular integrals are used in many applica-
tions, optimal methods for calculating these integrals are not developed.

An exception is the book [4], where asymptotically optimal with respect to
accuracy methods for calculating integrals of the form

27 p27
/ f(o1,02)
o Jo

0 < y1, ¥ < 1 were constructed on Holder and Sobolev classes.

Thus, the development of optimal methods for calculating multidimensional
weakly singular integrals is an actual problem. Construction of efficient cubature
formulas for calculating weakly singular integrals for calculating capacitances of
conductors of arbitrary shapes by iterative methods proposed in [25] is very im-
portant in many applications, for example, in wave scattering by small bodies of
arbitrary shapes and in antenna theory. A bibliography on methods for calculating
capacitances and polarizability tensors is contained in [25, 9].

In this paper the method proposed in [4] is generalized to multidimensional
weakly singular integrals. As a result the analogs of the basic results for singular
integrals, obtained earlier, are obtained for weakly singular integrals. Moreover,
we study the applications of optimal with respect to order cubature formulas for
calculating weakly singular integrals on Lyapunov surfaces. Our results are used
for constructing an universal code for calculating capacitances and polarizability
tensors of bodies of arbitrary shapes.

This paper consists of two parts.

In the first part of the paper optimal methods for calculating integrals of the

types:

Y1 Y2

02 — 82
dO'l dO’z,
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/o (=) + (1 — 1))
1<t <1,0<h <1, (1.2)

are constructed on Holder and Sobolev classes of functions.

Our results for integrals (1.1) can be generalized to the integrals with other
periodic kernels and functions. The development of cubature formulas for inte-
grals (1.1) is of considerable interest because the results are applicable to integrals
with weakly singular kernels defined on closed Lyapunov surfaces.

It will be clear from our arguments, that the results can be generalized to
[-dimensional integrals, [ = 3,4, ....

The second part of this paper deals with the iterative methods for calculating
capacitances of conductors of arbitrary shapes. A general numerical method for
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MULTIDIMENSIONAL WEAKLY SINGULAR INTEGRALS AND APPLICATIONS 283

calculating these capacitances is developed, and the results of numerical tests are
given.

2. Definitions of Optimality

Various definitions of optimality of numerical methods and a detailed bibliography
can be found in [1, 2, 27]. Let us recall the definitions of algorithms, optimal with
respect to accuracy, for calculating weakly singular integrals.

Consider the quadrature rule

n2 p1 P2

ny
Tf = Z Z Z Z Prykolyily (T l‘z)f(ll’m Xty > Yi,) +

k1=1ky=11;=01,=0
+ Rnlnz(f; pklkzlllz; xkl’ ykz; tla tz)ﬁ (2‘1)

where coefficients py i1, (f1, ©2) and nodes (xg,, yr,) are arbitrary. Here
1826162 f p 1 2
FOR (51, 5) = a1t £ (s, 52)/0s,'ds5 .
The error of quadrature rule (2.1) is defined as

anz (fﬂ Phykalilys Xkys ykz) = sup |Rn1n.2 (f; Prikalilys Xkys Yy s I, Z‘2)"
(t1.02)€[-1,1]2

The error of quadrature rule (2.1) on the class W is defined as

Rn.ln.z (\l’; pklkzlllz; xkl’ ykz) = Sup Rn1n2 (f’ pklkzlllz; xkl’ ykz)'
fev

Define the functional

;n.ln.z (\Ij) = inf Rnlnz (‘Ij, Plikalilys Xk s ykz)'

DPrykolyly Xk > iy

The quadrature rule with the coefficients py , , ,, and the nodes (x , y;,) is op-
timal, asymptotically optimal, optimal with respect to order on the class ¥ among
all quadrature rules of type (2.1) provided that:

Rn.ln.z (\IJ; p]tlkzlllz; x:15 )’;2)
Snany (W)

The symbol « < 8 means Ae < B < Ba, where 0 < A, B < 00.
Consider the quadrature rule

=1;~1, =<1, ny,n,— 0.

Tf =Y pelti, ) f (M) + Ru(f: pic My 1. 12), 2.2)

k=1

where coefficients py(#1, ;) and nodes (M, ) are arbitrary.
The error of quadrature rule (2.2) is defined as

R.(fipe: M) = sup  |R,(f: pr: Mi; 11, 1)

(t1.10)€[-1,112
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The error of quadrature rule (2.2) on the class W is defined as

R, (¥; pi; My) = sup R, (f, px; My).
fev

Define the functional
(W) = inf R,(V; pi; My).
pr; My

The quadrature rule with the coefficients p; and the nodes (M}) is optimal,
asymptotically optimal, optimal with respect to order on the class ¥ among all
quadrature rules of type (2.2) provided that:

R,(V; pi; My)
& (W)

By R,,,, (W) the error of optimal cubature formulas on the class W is defined.
It is obvious that R, ., (W) = {u,5, (V).

=1;~1, <1, n— oo.

3. Classes of Functions

In this section, we list several classes of functions which are used below. Some
definitions are from [18, 21].

A function f is defined on A = [a, b] or on A = K, where K is a unit circle,
satisfies the Holder condition with constant M and exponent «, or belongs to the
class Hy(M), M > 0, 0 < a < 1,if |[f(x) — f(x7)] < M|x' — x"|* for any
x',x" e A.

Class H,, where w(h) is a modulus of continuity, consists of all functions f €
C(A) with the property | f(x1) — f(x2)| < Mw(|x; — x2|), x1,x; € A.

Class W™ (M) consists of functions f € C(A) which have continuous deriv-
atives f/, f”,..., f"~VD on A, and a piecewise-continuous derivative £ on A
satisfying max,cpqp1 | 7 (x)| < M.

Class W;(M), r=12,...,1 < p < oo, consists of functions f(¢), defined
on a segment [a, b] or on A = K, that have continuous derivatives f’, f”, ...,
£ and an integrable derivative £ such that

1/p
U If(’)(x)l"dx] <M.
A

Class W, (M), r =1,2,...,0 < a < 1, consists of functions f(¢), defined on
a segment [a, b] or on A = K, which have continuous derivatives f/, f”, ..., f©,
such that

1FO ) — FO )] < Mlx — x2|*.

A function f(xy, xp,...,%), I =2,3,...,definedon A = [ay, by, dz, b2; ... ;
ai, bjloron A= K; x K, x --- x K;, where K;, i = 1,2,...,1[, are unit circles,
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satisfying Holder conditions with constant M and exponent ay, i = 1,2,...,1, or
belongs to the class Hy,, (M), M >0, 0<a<1,i=12,...,1if

.....

| fxr, %25 ooy x) = fFn, yas oo, YOI S M(Jxy — 3™ 4 -+ - 4 |x — ™).

Let w, w;, wherei =1,2,...,1, I =1,2,..., be moduli of continuity.
Class H,,,, .., (M), consists of all functions f € C(A), A =[a1,by; a2, by; .. .
aj, bl or A = Ky X Ky X --- x K, with the property

|f(X1,.X2,...,X[) - f()’l’ )’2,~~~,)’l)|
< M(wi(lxy = i) + -+ - + (|l = yi]).

Let H;”(A), J=12,3 A=la,by,a3,bs;...;0;,b)]or A = K; X K5 X
-x Ky, 1 =2,3,..., be the class of functions f(xy, x2, ..., x;) defined on A
and such that

|f ) = fOI < wlpj(x,y), =123,

where x = (x1,...,x), ¥y = (1,..., y), pi(x,y) = maxygg(lx — yil),
P y) = Yoy b =yl patay) = [Xhe b — w212,
Let H]‘?‘(A), Jj=1,2,3, A=lay,bya,by,...;a,,b)Jor A = K| X Ky X
-x Ky, 1 =2,3,..., be the class of functions f(xy, xs, ..., x;) defined on A
and such that

If) = fFODDI < (pj(x, y))%, j=1,2,3.

More general is the class H;;(A), j = 1,2,3. It consists of all functions f (x)
which can be represented as f(x) = p(x)g(x), where g(x) € H(A), j =1,2,3,
and p(x) is a nonnegative weight function.

Let Z;‘? (A), j = 1,2,3, be the class of functions f(xy, x2,...,x;) defined on
A and satisfying

lf)+ f() =2f((x+y)/D] < wlpjx,y)/2), j=123.

Let Z$(A), j = 1,2,3, be the class of functions f(xi, x2, ..., x;) defined on
A and satisfying

If)+ fO) —2f((x+ /D] < (pj(x, y)/D%, j=1,2,3.

Class Z;‘j(A), Jj = 1,2,3, consists of all functions f(x) which can be re-
presented as f(x) = p(x)g(x), where g(x) € Z7(A), j =1,2,3, and p(x) is a
nonnegative weight function.

Let Wt—1(M), | = 1,2,..., be the class of functions f(x;, x;, ..., x;) de-

fined on a domain A, which have continuous partial derivatives 3! f (xy, ..., x;)/
oxy' ..o, 0 < vl < r =L wl=wv+-Fuy,n 2 20 0=
1,2,...,1, r =r + --- + r; and all piece-continuous derivatives of order r, sat-

isfying [10" £ (x1, ..., x1)/0x]1 ... 9x'lc < M and |07 £(0, ...,0,x;,0,...,0)/
axlc <M, i=1,..,1
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Let Wy-""(M), I =1,2,..., 1 < p < oo be the class of functions f (x, x,
.., X), defined on a domain A = [ay, by;...; a;, by], with continuous partial
derivatives 3" f(xy, ..., x)/9x;" ... 0x", O < | < r =1, o] = v +--- +
vy, rn=2v=20,i=12,...,1, r=r + -+ r, and all derivatives of order r,

satisfying

||8rf(x1, vy xl)/ax?ax;z e 8xlrl "Lp(A) < M,
9702 FY £ (xy, 0, ..., 0)/0x]" 0x3% ... 0x" I, ey, by < M,
lva| + o3| + -+ ol <r—r — 15

”8vl+m+vl_1+rlf(0, cevy 0, xl)/ax;” 8x§2 e 8x;)i_11 8)6;1 “Lp([al,bl]) < M,
lvil + o2l + -+ ol <r—rn_y — L
Let A = [a1,by; a0, b2 ...;a;,b)lor A = Ky x Ky x --- x K;. Let C"(M)
be the class of functions f(x, xa, ..., x;) which are defined in A and which have

continuous partial derivatives of order r. Partial derivatives of order r satisfy the
conditions

” M f(xy, ..., x1)

ax;'...0x,

<M
C

forany v = (vq,...,v),wherev; >0, i = 1,2,...,[are integer and Zle v =F.
By W we denote the set of periodic functions of the class W.
It is known [12] that Lyapunov spheres are defined as regions bounded by a
finite number of closed surfaces satisfying the three Lyapunov conditions:

(1) At each point of the surface a tangent plane (and, therefore, a normal) exist.
(2) If © is the angle between the normals at the points m; and m,, and r is the
distance between these points, then

® < Ar*, 0 <A<,

where A and A are positive numbers which do not depend on #1; and m,.

(3) For all points of the surface, a number d > 0 exists such that there is exactly
one point at which a straight line, parallel to the normal at the surface point m,
intersects the surface inside a sphere of radius d centered at m.

Let S be a Lyapunov sphere, and N be the exterior normal to this sphere. We
introduce a local system of Cartesian coordinates (x, 1, ¢), whose origin is located
at an arbitrary point mg of S, the ¢ axis is directed along the normal N, at the
point my, and the x and n axes lie in the tangential plane. In a sufficiently small
neighborhood of m, the equation of the surface S in the local coordinates (x, 1, ¢)
has the form

& =F(x,m.
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4. Auxiliary Statements

DEFINITION 4.1 ([12]). The surface S belongs to the class L;(B, @) if F(x,n) €
WE(B), and the constants B and & do not depend on the choice of the point .

We need the following known facts from the theory of quadrature and cubature
formulas. These facts can be found, for example, in [11, 16, 18, 21].

LEMMA 4.1. Let \V; be the class of functions W;(l), r=12,..., 1 <p<
o0, 0t <1, f(t) € ¥y, and the quadrature rule

1 n
[ s =Y per+ R
k=1

be exact on all the polynomials of order up to p — 1, and has error R, (V) on the
class V,. Let VY, be the class of functions W[’,(l), r=1,2,..., 1< p<oo, a<
x < b, and g(x) € W (1). Then the quadrature rule

b n
[ et =00 Y mea+ ¢ -am + R

k=1
has error R, (V;) on the class of functions ¥, and

R,(¥) = (b—a)t'""VPR,(¥)).

THEOREM 4.1 (|21]). Among quadrature formulas

1 mop
[ e =0 pur O+ RGP = LiH + RO

k=1 [=0

the best formula for the class W,(1) (1 < p < o) withp =r —landr =
1,2,...,0orp=r—2andr =2,4,6, ..., is the unique formula defined by the
following nodes x;; and coefficients py;:

xp =hQk -1 +[R DIV, k=1,2,...,m,

* (_1)1 1 i
pi=(=D'py = hHl{ T D R DI 4 SRETEO)
(=0,1,...,p),
2h2v+1 o
— (r—2v-1) _ 1. .
Py = 0 R, (D <k_2,3,...,m 1,v—0,1,...,|: 3 ]),

. r—2
Piow1 =0 (k=23,....m—-1,v=0,1,..., 7 ,

h=2""m — 1) +[R,()]V"",

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



288 ILYA V. BOIKOV AND ALEXANDER G. RAMM

and R,,(t) is the Chebyshev polynomial t" + Z:;é Bit', deviating least from zero
in the norm Ly(—1, 1), where p~' 4+ ¢! = 1. Here

rrg(D)
27r1rq + Lm — 1+ [R (D7)

GIWH(D)] = R,[W) (D] =

Let a function f(x, y) be given on a rectangle D = [a, b; ¢, d]. Consider the
cubature formula

[[ Feronacay =33 pufGuon + Run ) @

k=1 i=1

defined by a vector (X, Y, P)ofanodesa < x; <xp < --- <x, <b, c <y <
yr < --- <y, < d,and coefficients py;.

THEOREM 4.2 ([21]). Among all quadrature formulas of the form of (4.1) the
Sformula

ff e, y) dx dy
D

=4hq » Y fla+ 2k — Dh,c+ Qi — Dg) + Run(f),
k=1 i=1
where h = 24, ¢ = d—_nc, is optimal on the classes H,

om 2 (D) and HY (D). In
addition

1,02

q

h
RynlHey, 0, (D)] = 4mn |:q / () dt +h /
0 0

q rh
Rym[HZ(D)] = 4mn / / w(/1? + 12) dr dr.
0J0

(1) dt] ;

Consider the cubature formulas of the form:
N
[[ peonsnardy =3 prot) + RO 42)
D k=1

where p(x, y) is a nonnegative and bounded on D function, py, M, (M; € D) are
coefficients and nodes.

THEOREM 4.3 ([21]). Let p(x, y) be a nonnegative bounded weight function. If
RN[H;‘J(D)] and RN[ZZ’j(D)], where j = 1,2,3, and 0 < a < 1, are the errors
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of optimal formulas as (4.2) on the classes H;‘ﬂ j(D) and Z; (D), respectively,

then
lim N**Ry[HZ (D)]
N—o0 K
= lim N*?2Ry|Z; ;(D)]
2+a) /o
B D’[// (pix, Y))Z/m“)dde] . j=1.23,
D
where
12 1 @ta)/a  pw/6 dy 1
D, = —= —_—, D,=2"%(2 ,
: 2+a<2ﬁ) /0 cos2te g 2 /2+a)

and D3 =2'7%2 /(2 + a).
If j =2, then the conclusion holds for n-dimensional cubature formulas.

Remark. Theorem 4.2 is generalized to the case of unbounded weights p(x, y)
in [5].

In this paper we will use the following result (see [3]):

LEMMA 4.4. Let H be a linear metric space, F be a bounded, closed, convex,
centrally symmetric set with center of symmetry 6 at the origin, and L(f), 1 (f),
oo IN(f), be some linear functionals. Let S(I;(f), ..., In(f)) be some method
for calculating the functional L( f) using functionals (I;(f), ..., In(f)), and 8 be

the set of all such methods. Then the numbers D, ..., Dy exist such that
N
sup |L(f) — ZDklk(f)‘ = infsup |[L(f) = S (f),....In(N].  (43)
feF =l 8 feF

This means that among the best methods for calculating functional L(f):

L(f) = SU(f), ... In(f)), (4.4)

there is a linear method.

Proof. Let us associate with each f € F apoint (L(f), li(f),...,In(f)). Let
Y be a set of all such points (yg, ..., yy) for f € F.

From our assumptions, it follows that Y is a closed centrally symmetric set with
the center of symmetry at the origin.

Let

Dy = sup Y0-
(».0,...,0)eY

Then 0 < Dy < 0.
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Draw the support plane for the set Y through the point (Dy, 0, ..., 0):

N
(o — Do)+ »_ Cjy; =0.

j=1
Since Y is centrally symmetric with respect to the origin, the plane

N
o+ Do)+ Y Cjy; =0

j=1

is also a support plane for Y, and Y lies between these two planes.
Hence, we have for the points of Y the inequality:

N
Yo=Y Djy;
j=1

The definition of y; implies

< Do, Dj == —Cj.

sup < Dy. (4.5)

feF

N
L(f) =Y Dl;(f)
j=1

Let fy be an element F corresponding to the point (Dg,0,...,0). Then
Sh(Efo),....In(E£fo)) = S(,...,0). The right-hand side of (4.3) is not less
than infg max{|L(fp) — S(0, ..., 0|, |[L(—fo) — S(0,...,0)} = inf, max{| Dy —
al, |Dg + al} = Dy, where a := S(0, ..., 0). This and (4.5) imply that the right-
hand side in (4.3) is not less that the left-hand one. But the right-hand side of
(4.3) can not be less than the left-hand side of (4.3) because a set of methods S
for calculating functional (4.3) contains a set of linear methods. Lemma 4.4 is
proved. O

COROLLARY. Among all functions for which the optimal method for calculating
L(t) has the greatest error for a given set of functionals, there exists a function
satisfying the conditions l;(f) = ---=Iy(f) =0.

It follows from the proof that such a function is the function fy.
5. Optimal Methods for Calculating Integrals of the Form (1.1)
5.1. LOWER BOUNDS FOR THE FUNCTIONALS &, AND &,

In this section we derive lower bounds for the functionals ¢, and ¢y, defined in
Section 2, for calculating integrals (1.1) by the cubature formulas

ny  p1 P2

1
Kf = Z Z Z Z Piaklyly (515 Sz)f(ll’ZZ)(xkl, X)) +

k1=1ky=11;=01,=0
+ Rnlnz(f; pk1k21112§ Xkys xkz; S1, 52)5 (5'1)
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and

N
Kf = pilsi,2) f(Me) + Ry(f: pi: Mic 51, 52) (5.2)
k=1

on Hoélder and Sobolev classes.

THEOREM 5.1. LetV¥ = H,, ,,,(D) or ¥ = Hy (D), and calculate integral (1.1)
by formula (5.1) with py = p> = 0. Then the inequality

y " a
Sy (W] 2 —nlnz[ f wl(t)dt+hf wz(t)dt],
w2 0 0

where ¢ = w/ny, h = n/ny, and

27 p 21 dSl dSz
= 5.1
Y /0 /0 (sin’(s1/2) + sin’(s2/2))* -1

is valid.

COROLLARY. Let W = H,,(D) or ¥ = Hj (D), and calculate integral (1.1) by
formula (5.1) with ny = ny = n and py = p1 = 0. Then the inequality

o

2ym

Cn.n. [\Ij] > m

is valid.

Proof of Theorem 5.1. Denote by (s, 52) a nonnegative function belonging to
the class H,,,,(1) and vanishing at the nodes (xg,, xg,), 1 <k < np, 1 <k <
nj.

One has:

nlnz (lpl pk]kzv xkl ’ xkz

-/2”/2” <f272” Y (o1, 02) doy dos ) d
— — ~ ) dsi ds,
4,, [sin*((1 — 51)/2) + sin*((02 — 52)/2)]

m A ¢(01, 02) X
< 271’ 27 dS] dS2
/ / ) ) dO'l d0'2
[sin*((oy — $1)/2) + sin* (02 — 52)/2)]*
B dS] dSz 27 p 27
= 4712 A /0 G672 1 S e ) /0 A ¥ (s1, 52) dsy ds. (5.3)
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292 ILYA V. BOIKOV AND ALEXANDER G. RAMM
From Lemma 4.4 and Theorem 4.2 one concludes that the following inequality
Rnlnz (Kb; pk1k2; xkl il xkz)

y h 4 b4 b4
z Snmna|q | o()dt+h | woy)dt|, h=—, g=—
T 0 0 h na

holds for arbitrary weights py,x, and nodes (xg,, x,) and

h q
fn (9) > %nlnz[q [ ervar s [ w dt].
0 0
Theorem 5.1 is proved. O

THEOREM 5.2. LetV = H or WV = Z7, i = 1,2, 3, and calculate the integral
K f by cubature formula (5.2). Then

enLHY] = 2en[Z%] = (1 + o(1))y (4nH¥*D; N~/

where
D — 12 <L) (+2)/2 -/71/6 d—w D, — # -
T 24a4\2n3 o costag’ 292+ a)’
2l—a/2
D; = .
24+«

Proof. The proof of Theorem 5.2 is similar to the proof of Theorem 5.1, with
some difference is in the estimation of the integral fozn fozn Y (s1, $2) dsy dsz, where
the function ¥ (s, s2) belongs to the class H (or Z'), is nonnegative in the domain
D = [0, 27]?, and vanishes at N nodes My, k=1,2,..., N.

Using Lemma 4.4 and Theorem 4.3, one checks that the inequalities

27 p27
inf  sup f W (s1, s2) dsp dsy = (1 4+ 0o(1)) D; (4r2)3Fa/a Ny=a/2,
Mi yen? y(mp=0Jo Jo

27 o227
inf  sup f ¥ (s1, 52) dsy dsy = (1 + o(1)) 4 D; (dn?)CH/ey =/
My yeze,y(Mp=0J0 Jo
hold for arbitrary M, € D, k=1,2,...,N.
Substituting these values into inequality (5.3), we complete the proof of Theo-
rem 5.2. O

THEOREM 5.3. Let ¥ = 55(1), and calculate the integral K f by formula (5.1)
with p1 = po =0, and ny = ny = n. Then
2y K,

nr

Zin[W] = (14 0o(1))

where K, is the Favard constant.
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Proof. Let

Y (s1, 52) = Yi1(s1) + Pa(s2),

where 0 < ¥(s) € W7 (1) vanishes at the nodes x;, k = 1,2,...,n,and 0 <
Yra(s) € W (1) vanishes at the nodes y;, k=1,2,...,n.

According to [21], for arbitrary nodes x;, k = 1,2, ..., n one has:
e 27 K, .
Yi(s)ds = . i=12
0 n’

Thus, the inequality

87%K,

27 p27
/ Y (sy,52)dsydsy >
0 JO

holds for arbitrary nodes (xi, ..., x,) and (y1, ..., yn)-
The conclusion of Theorem 5.3 follows from this inequality and from (5.3). O

THEOREM5.4. Let W =W, (1), r =1,2,..., 1 < p < 0, and calculate the
integral K f by formula (5.1) with py = p, =r — 1l and ny = ny = n. Then

zlqur—l/pqu (D)
(rq + DVa(n — 1 + [Rg (DI

Gl W1 > (1+0(1)—

where R, ,(t) is a polynomial of degree r, least deviating from zero in L,([—1, 1]).

Proof. Let L = [10’; —]. Take an additional set of nodes (&, &), & = 2nk/L,
k,1=0,1,...,L —1.By (v;,w;), i,j=0,1,...,N =1, N=n+ L, denote
the union of the sets (xi, y;) and (§;, §;). Let ¥ (s1, s2) = ¥1(s1) + ¥2(s2), where
Y1(s) € W,(1) vanishes with its derivatives up to the order r — 1 at the nodes
vi, i =0,1,..., N — 1, and ¢(s) € W (1) vanishes with its derivatives up to
order r — 1 atthe nodes w;, j =0,1,..., N—1. Assume f;f“ Yi(s)ds >0, i =
0,1,...,N —1, andfu’j’jf+1 Ya(s)ds >0, j=0,1,..., N — 1, where vy = 27
and wy = 2.

Let

0, if (o1, 02) = (51, 2),
h(Sl,Sz,O’l,O’Q) = 1
(sin?((o1 — 51)/2) + sin®((o2 — $2)/2))*’

otherwise,

n ¥ s),  if (s, ) 20,
vlon ) = {0’ if ¥ (s1,52) <0,

_ [0, if (s, 52) 20,
w (Sl’ S2) B { _w(sl’ SZ)’ ifw(sla 52) < 0.
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Foreach value (§;,&;), i, j=0,1,..., N —1,wehave (with N=N,=N,=L):

27 p27
f f h(&. &, 01, 02)¥ (01, 03) doy dos
0 JO

N—-1N-1

-3

k=0 =0 Y&

Skt

1 L&
f h(ei & 01, 02)¥ (01, 02) don dor
&

N—-1N-1

-3y
k=0 =0 * 5k
Iy
k=0 [=0 Y5k
i+H[(N1=1)/2] j+H[(N2—1)/2]

S+

1 L&+
/ h(gi & 01, 0209 (o1, 02) don doy —
&

Skt

1,8+
/ h(g & 01, 0% (01, 0) doy o
&

> D k& Ee E) X
k=i+1 I=j+1
Ers1 pE1
x f ¥+ (1. 02) do doy +
&k &
i+[(N—=1)/2] i—1

+ Y > hGEnEj Eenn Eon) X

k=i+1 I=j—[(N2—1)/2]

Sk+1 p&i
X f ¥t (01, 02) doy dop +
& &1
i—1 J+I(N2—1)/2]

+ > > hGnEj Eer f) X

k=i—[(N1—=1)/2] I=j+1

& préin
< [ [T vt on o dor+
&-1Y&
i

i—1 j—1

+ Z Z h(&i, &), 8k—1, &i-1) X

k=i—[(N1—1)/2]1=j—-[(N2—1)/2]

& r&
X f ¥ (01, 02) doy doy —
Ek—1v &1

N =1)/2] jH{(N2=1)/2] b1

Ek+1
- Y Y kG s fs [ o do, -

k=i+1 I=j+1
i+[(N1—1)/2] j—1

— Z Z h(&i, &, &k, &1) X

k=i+l  I=j—[(Na—1)/2]

&k+1 &
X f Y~ (01, 02) doj dop —
&

k &1
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i—1 J+HIWN2—-1)/2]

- Z Z h&i, &), &k &) X

k=i—[(N1—1)/2] I=j+1

& pén
< [ [ oo dordon -
&—1Y&
i—1 j—1

- 2 > h(EEjEGE) X

k=i—[(N1—1)/2]1=j—-[(N2—1)/2]

& r&
Xf Y~ (01, 02) doy doy
&k—1Y 81
i+H[(N1—=1)/2] j+[(N2—-1)/2]
= Y > hEn & b B X

Sk+1 pE11
Xf Y (01, 02) doy doy +
& J&
HM-D/2 el
+ Y B E) X

k=i+1 I=j—[(N,—1)/2]

Sk+1 p&
X f Y (01, 02) doy doy +
&

i3 &1
i—1 J+I(N2=1)/2]

+ 2 S R B B X

k=i—[(N1—-1)/2]  I=j+1

& préin
x [ [ woron dordon +
&-1Y&
i—1 j—1

+ Z Z h(&i, &), 8k—1, &i-1) ¥

k=i—[(N1—1)/2]1=j—-[(N2—1)/2]

& r&
X f Y (01, 02) doy dop —
&r—1/ &1
i+[(N1=1)/2] j+[(N2—1)/2]

- > o g E E) — hEn g Ee, &) X

k=i+1 I=j+1
Ek+1 L&l
X / Y~ (01, 02) doy dop —
& &
i+[(N1—1)/2] j-1

- > (hEEp b ) — hEL ) B E21) X

k=i+1 I=j—[(N,—1)/2]
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& r&
X / Y~ (01, 02) doy doy —
&

k1Y -1

i—1 JHIN2—-1)/2]

-y > (hEn & e &) — (L £ £ E1)) X

k=i—[(N{=1)/2]  I=j+1

& péin
X / Y~ (01, 02) doy doy —
&—1Y&
i

i—1 I=j—1
-y Yo Gk b &) — i B E-) X
k=i—[(N1—1)/2]i=j—[(N2—1)/2]

& ré&
X / ¥~ (01, 02) doy doy
§k—1v 81

=h+h+bL+hht+t L+ L+ L+ 14

Let us estimate the integral

Ek+1 pE1+1
’/ Y~ (01, 02) doy dop
&

3 &
Ekt1 LE1 &+1 LE1
<f / [ (o1 o)l doy d02</ / ¥ (01, 02)| doy do
&k & &k &
Er+1 &1+1
< G — &) A |1 (o) do + (Skvr1 — &k) |¢2(0)| do
&

&
<2 — —,
L r!

where we have used the fact that the functions ¥r;(s) and ¥, (s) on the segments
&k, Erv1] and [&, &4+1] vanish with derivatives up to order r — 1.
Now let us estimate the sum:

i+[(L-1)/2] j+[(L-1)/2]

Yo > I E Ee E) — i & B £

k=i+1 I=j+1
i+[(L-1)/2] j+[(L-1)/2]

1

o 2 wk+1—i) <2 (41— )\
(sm =5 + sin S )

k=i+1 I=j+1
1

. —i . —\A
(Sln2 271’(/2 i) + San 271’(2 j))

i+[(L-1)/2] j+[(L—1)/2] 1

- 2 w(k—i) .2 (= 1+
k=i+1 S (sin® ZE=E 4 gin? 20

N
~ e

k—i 1—j
L L
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i+[(L-1)/2] j+[(L—1)/2] L2+24 k=) +UA-j)
((k _ 5)2 + (l _ j)2)1+x L

<

M~ e

k=i+1 I=j+1
[(L-1)/2] 1 [(L-1)/2] 1
2A
<c(l) ( Z lz_x+ Z ﬁ)
=1 k=1
L2 ifx <1

22
<) {logL ifa=1,
1 ifA> 3.

By ¢ > 0 various estimation constants are denoted. Thus

11=O — .
n"

The expressions I, I3, and I, are esimated similarly.
From the definition of the function ¥ (s, ;) it follows that the error of cubature
formula (5.1) for s; = &;, s, = &; can be estimated as follows:

Ry, &, §))
2 p2mw
=/0 A Y (o1, 02)h(§, &}, 01, 02) doy dop

i+[(L—=1)/2] j+[(L-1)/2]

1
> 0<;) + Z Z h(&i &), &, &) X

k=i+1 [=j+1

&1 pEI41
X / Y (o1, 02)doy dop +
§

. Y&
H@L-D/21 -1 ferr rE
+ ) Do hGnEj e E0) ¥ (01, 02) doy doy +
k=i+1 I=j—[(L-1)/2] & V1
i1 JHUL=D/21 & rhy
+ ) > hGi g g Er) ¥ (01, 02) doy doy +
k=i—[(L—-1)/2] I=j+1 178
s j-1 & p&
+ Z Z h(&is &), Se—1,51-1) ¥ (01, 02) doy doy.

k=i ~[(L—1)/2] l=j~[(L—1)/2] Se-1V 611

Averaging the above inequality over i and j, one gets:

Rn.n. [\Ij] = Sup max Rnn(wa éi, 5;)
yev bLJ

Z Z h(&i &, &k &) X

L—1L—-1 |:i+[(L—1)/2]j+[(L—1)/2]
k=i+1 I=j+1
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&k+1 pE1+1
X f Y (01, 02) doy doy +
&k &
i+[(L-1)/2] j—1

+ Z Z h(&i &y &k, E1-1) X

k=i+1 I=j—[(L—1)/2]

Sk+1 L1
X f Y (o1, 02)doy doy +
§

i3 Sl 1
J+l(L—-1)/2]

+ Z Z h(‘.;”i,éj,ék—l,ém) X

k=i—[(L—1)/2] I=j+1

& ré+
X f Y (01, 02)doy doy +
§r-1v&

i—1 j—1

+ Y Yo hGn & g Eo) X

k=i—[(L—1)/2] I=j—[(L—-1)/2]

f (01,00 doy ddz] + o<i)
&1V &1 n

i+[(L-1)/2] j+[(L—-1)/2]
1 1 Eev1 LE11
0(;) + _[ Y ¥ fs ¥ (01, 05) doy doy x

L2
k=i+1 [=j+1 K J&

Vv

t~
L
t’*

X h(&, &js k1 S141) +

i=0 j

Il
=}
¥
=}

+ Z Y (o, 02) doydoy X
k=i+1 j—[(L-1)/2] &k &1
L—1L-1
X YD b e &) +
i=0 j=0
i-1 JHEL=D/2] g g
+ Z Z f ¥ (o1, 02)doy doy X
k=i—[(L=1)/2] I=j+1 §-1v &
L—1L—1
X Z Zh(gl’ Ejs Ek—la gl-l-l) +
i=0 j=0
i-1

j—1
+ Z Z f ¢(0'1, 0'2)(10'1 d0'2 X

k=i—[(L—1)/2]1=j—[(L—1)/2] §-1

i+l(L-D/2]  i=j-1 /.ng &
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~

-1 L-1

h(‘i:is ‘é>:j’ Sk—lﬂ gl—l):|

iM

Jj=0

X
1 27 p2m
)+— Y (01, 02) doyp doy x
0

- ( 472
x</27” e o)) o0
o Jo (sin®(01/2) + sin®(02/2))* n

where the following relation was used:

=|_

L2 L1l

Zzh@uépéfc 1, &-1)

i=0 j=0

logn 2 p2m do doy
=0 + / / ) . 2 I
n o Jo [sin“(01/2) 4+ sin”(02/2)]

Without loss of generality one may assume £ = 1, / = 1 in the previous equation.
Let us estimate

47'[2 L1l 2 2 dO’] d0'2
o = ;;’h@,,g,,o 0= f / (sin® (01 /2) + sin®(02/2))*
L 1 L 1 Eiv1 pEjvt
<|ZXf / | T
I_O pr (sin? <<s,-)/2> + sin®((£,)/2))*

] doy doy| +

~ Gsin(01/2) + sz (02/2))*

& 1
’ ‘ /0 /0 (sin*(01/2) + sin*(02/2))* don dor

where YY" means summation over (i, j) # (0, 0).
Let us estimate #; and u;. One has:
L 1 L 1

= uy + uy,

U

§iv1 rEj1 1
/ / [(sinz«o—l)/z)+sin2(<oz>/2>>K -

—0 j=0

:|d0'1 doy| +

 (sin? (&/2) + sin® (02 /2)*
L 1L 1

Eiv1 pEjin1 1
/ / [(Sinz((&)ﬂ)-i-Sinz((Gz)/2))X -

—0 j=0

] dO'l dO’z

~ (sin? (éi/2) + sin’(§;/2))*

= Uy + ujz.
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The expressions u1; and u1, can be estimated similarly. Let us estimate #;:

1
s 4; ,Z-(; (Sin((&)/2) + sin®(§)/2)) 1+
1 1
< L2 G ZZ (l +]2)1+)» <c L2 24°

i=0 j=0

where ¢ > 0 stands for various estimation constants. Hence
c

U < ——.
LZ—ZA

Let us estimate u5:

&1 |
/(; /(; (Sinz(O'l /2) + Sinz(oz/z))x dO'l do‘2

&1p6 1
< C// ————doy dos.
0o (of + o)

Using polar coordinates, one gets:

L p2m c
0/0/0 o1 44 S T

C
L2-2%"

Thus:
Up <

From Lemmas 4.4, 4.1, and Theorem 4.1 it follows that

2w r+1/
1+0(1)2r YR, (1
1(o1) doy > ( (1 ) (2m) q(1) — (5.5)
0 27rl(rq + DV (n — 1 + [R,,(D]V/)"
where R,,(t) is a polynomial of degree r, least deviating from zero in L, ([—1, 1]).
Theorem 5.4 follows from inequalities (5.4) and (5.5). O

5.2. OPTIMAL CUBATURE FORMULAS FOR CALCULATING INTEGRALS (1.1)
5.2.1. Holder Class of Functions

Let x; := 2](71'/?1, k=0,1,...,n Ay = [xk,xk+1,xl,xl+1], k,1=0,1,...,
n—1, x;, = gp1+x)/2, k=0,1,...,n—1,and (51, 52) € A;j, 1,7 =0,1,...,
n—1.

Calculate the integral K f by the formula:

n—1 n—1 d d
Kf = ZZf(xk,xl)// e — 4+ Ru. (56
k=0 1=0 Au (sin® (=)
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THEOREMS5.5. Let ¥ = H,,(D), 0 < o < 1. Among all cubature formulas
(5.1) with p1 = p» = O, formula (5.6), which has the error

2 1 *

is asymptotically optimal. Here y is defined in (5.1").
Proof. Using the periodicity of the integrand, we estimate the error of cubature
formula (5.6) as follows:

Ro| < Z ff [ Flor,00) — Fx %)
" =0 1=0 / /A sm2 "1 S 4 gin? "2252))"
(.X ) - (xi5x‘)
— f k f p— K:|d0]d0'2
(sm2 12 t —|—s1n2 — ’)
n—1 n—1
DL ] e et +
=0 =0 Y /A sm2 a4 sin? "2;‘"2)
n—1 n—1
H X [ et - s x
k=0 1=0 Kl

1 1
X 5 5 o= PN doy doy
1 o151 1 0252 20 2 02—
(sm >+ +sin” =5 ) (sm n=x _|_ sin® — J)

= rn +n.
Let us estimate each of the sums r; and r, separately. One has:

i+M  j+M

S S | e e et e LU
2

2 01—51
k=i—Mi=j—M Y Y Or sm =51 +sin

n—1 n—1

ZZ / flov, o) = F x4 x) - doydoy

2 01 —S1 2 02—52
k=0 (=0 sm + sin” =45 )
= ru +r,

where Y Y means summation over (k,l) such that Ay ¢ A* A* =
[xi—pts Xigms1; Xj—pts Xjem41l, M = [Inn].
Furthermore

// dO'l dO’z
m <

_ ) Y
A* sm2 A “ + sin® %)

< mM/n (2w dpdqb clogn 1
pr S =% )
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Estimating ry,, one can assume without loss of generality (i, j) = (0, 0), and

get:
w/n pw/n n—1 n—1
ry < 4 / / (@1(01) + @2(02)) doy oy Y >~ hu(s1, 52, 01, 62)
0 Jo k=0 =0
w/n pr/n n=1n-1
< 4/ / (Ula+Ufl)dﬁldﬁzzzhkz(sl,sz,01,02)
o Jo k=0 I=0
8 - 24a n—1 n—1
(D) T i
k=0 =0
- 1+o(1)2<ﬂ)“ /272” doy do,
T+t n 0 Jo (sinz%—l—sinz%)'\.
Here
hu(s1, 52, 01,02) = sup  h(sy, 525 01, 02).
(01,02)€An

Combining the estimates of r;; and ry;, one gets:

1 1 o
"< L%(z) .
1+« n

Let us estimate r,. To this end we estimate the difference

ra(k, D)
_ f[A |G x)) = )y X))

X

1 1
2 o1—51 2 op—s2\* - 2 o1—x! 5 02X\ A dal dO'z
. — . — . 5 og—x! . _
(sm =5t +sin” 5= ) (sm 2L +sin TJ)

First, we estimate

ra(i, j)
c 1 1
S o f/ « 2 o1—s81 s 2 op—sp\A - 9 01—x! 5 02—X\ A dO’] dUz
n aij | (sin® 252 4 sin® 2252) (sin? 2% 4 gin? 27
< C
= n2+a—2x'

The value r,(k, [) is estimated similarly for |k —i| < 3 and |/ — j| < 3.
Let us estimate »,(k, I) for other values of k£ and /.
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One has:
r(k, 1)
= [[ 176t - redxix
Ap
1 1
2 2 T ; R, dO’l dO’z
(sin® 1571 + sin® 2232) sin® 2 + sin® =
2 2
k—i I—j
<[t -l () + (52 |+
nJJay, J n n
! +
X - —
(Sinz Ul_xi+921(51 ) + Sin2 02;.?2)1"")”
1
+ . 2 o1—x/+01 (s1—x)) .o 02=X 402 (s2—=x7)\ 144
(sm —— - +smn - - 7 3 ’)
c (k=] |1—=jl"\[|lk—il 17— jl
< — X
= n3< n +’ n n + n
2 144
X
(Ik—iI2+Il—j|2)
c (Jk —i] 4+ |1 — jp'*e
< - -
nu+2—2x (|k _ l|2 + |l _ ]|2)1+A
¢ (Jk —i> 4+ |1 — j|»H+e/2
= po+2—21 (|k _ i|2 + |l _ j|2)l+x
c 1
<

not2-2x (|k _ i|2 + |l _ j|2)1/2—a/2+x'
To estimate r,, one sums up the last expression over k£ and /. Without loss of

generality assume (i, j) = (0, 0). Then

(/2141 [n/2]+1

C ’ 1
r < m(16+4 Z Z (k2+lz)x+1/2—a/2)’

k=0 =0

where YY" means summation over k and [ such that k > 3 or/ > 3.
One has:

(/2141 [n/21+1

1
/
Z Z 2 1 J2yA+1/2—a/2
k=0 =0 (k2 + 12yrHl/ae

[n/11+1 1 [7/2]+1 [7/2]+1 1
<A[ ) i T > 2 (k2+lz)x+1/2—a/2:|

k=3 k=3 =3

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



304 ILYA V. BOIKOV AND ALEXANDER G. RAMM
1, if20 —a > 1;
< A logn, if2A —a=1;
pl=2teifoA —a < 1.
Hence
n @20 oL —a > 1
rn<Aynllogn, if2A—a=1;
nl, if2L —a < 1.
Thus, if « < 1, then
rn <on™%).
Combining the estimates of r; and r,, one gets:
24o0(1) [7\”
R,V <y————={— ) .
n[W] <y It .
Theorem 5.5 follows from the comparison of this inequality with the lower bound
of the value ¢, Hy o (D)], mentioned in the corollary to Theorem 5.1. O
Remark. If a = 1, the cubature formula (5.6) is optimal with respect to order.

The proof of Theorem 5.5 yields also the following result:

THEOREM 5.5. Let W = H,,(D), 0 < a < 1. Among all possible cubature
Sformulas (5.1) with py = p, = 0, formula

n—1 n—1
dO'l dO’z
Kf= f(x,X)f/ + Runs
kZ—(:)lZ(; e A sm G Sl +Sm ( ;Sz)y

which has the error

2 1 *

is asymptotically optimal.

To apply formula (5.6), one has to calculate the integrals

dO' dO’z
Iy = f / — (5.7)
A (sm2 R —|— sin? T’)
fork,1=0,1,...,n— 1. Exact values of these integrals for arbitrary values A are

apparently unknown. Therefore the procedure of numerical calculation of integrals
(5.7) should be given for practical application of formula (5.6).
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Letk =i and [ = j. Then the integral /;; is replaced by the integral

Pl = / " / o doy do h>0
Y —x/n J—x/n (sin2 4+ sin? "2—2)A +h
which can be calculated by cubature formulas (in particular, Gauss quadrature rule)
with arbitrary degree of accuracy because the function 1/((sin’ 3+ sin? %)k +h),

has derivatives up to arbitrary order. The choice of parameter / is discussed in
Section 8.

Letk =i, [ # j,and

47?2 x/—xi\"*
I; = —| sin® ! = p}.
n? 2 !

Letk #1i, I = j,and

2 / AL
Ik' — 4i Sinz xk _ xi = p*
J n2 2 k]

Letk #i, | # j,and

-2
47?2 X, —x! x; — x’
. 2k i .27 J *
Iy = ——| sin + sin = p;.
n? 2 2 K

The integral K f is calculated by the formula

n—1 n—1

Kf =33 pi i x) + Run(fs Pl %0 ). (5.8)

k=0 =0
Formula (5.8) is not optimal since it is not exact on constant functions f(x, y) =
const. But one can estimate the error of this formula:
n—1 n—1
| Run(f. P X4 YD1 S MDY D 1y — pigl + R (),
k=0 =0
where M = max | f(x, y)|.
The values |Iy; — pj;| are easily estimated, and one gets the conclusion of
Theorem 5.5'.

5.2.2. Classes of Smooth Functions

THEOREM 5.6. Assume ¢ € VT’”(l). Let ¥V = VT’”(l), and calculate the inte-
gral Ko by formula 5.1) with py =r — 1, pp =r — 1, and ny = ny, = n. Then
the cubature formula

27 p2w o , d d
Ky = f / __ mlOn)dndn g (5.9)
o Jo Gin(oy —s0/2 + sin(os — $:)/2)

is asymptotically optimal.
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Before proving Theorem 5.6, let us describe the construction of the spline ¢,,,.
Let x; = 2kn/n, k = 0,1,...,n. Divide the sides of the squares 2 = [0, 2x;
0, 27 ] into n equal parts. Denote by Ay, the rectangle Ay = [2kx/n, 2(k+1)7 /n;
2in/n,2(l + D /nl, k,1 = 0,1,...,n — 1. Let (s1,52) € A;;. First we ap-
proximate (o, 07) as a function of o3, and construct a spline ¢, (o7, 03) by the
following rule. Let o be an arbitrary fixed number, 0 < o7 < 27. On the segments
[2kw/n,2(k + 1) /n]lfork # j —2,..., j+ 1, one has:

90D (01, 2km /1)
Al

r—1
on(o1,00) =) [ (02 — 2knt/n)' + Bi8® (o1, (k + 1>/n>],
=0
where

oy — 2k7 /n).

r—1 0.0
(o1, 2k /n)
8(o1,02) :=p(o1,02) — ) | L 2er/m)

!
P Al

The coefficients B, are defined by the equation
r—1
Bir! 2
Qk+ D/n— ) = 3 ———= =@tk + 1)/n — o) ™!
Py r—1-D!n
=(—1)"R1Qr2k + 1)/2n; 7 /n; 03),
where R,(a, h, x) is a polynomial of degree r, least deviating from zero in the
norm of the space L on the segment [¢ — h,a + h]. On the segment
27 (j —2)/n,27(j + 2)/n] the function ¢, (07, 0») is defined by the partial sum
of the Taylor series:
9OV(oy, 27j/n)
1!

¢n(01,02) = @(o1,27j/n) + (o2 —j/n)+---+

Or=D(oy, 27j/n
L (01,27j/ )(G2 —2mj/my -,
(r — 1!

We define the function ¢, (01, 02) by analogy with the function ¢, (01, 02).

Proof of Theorem 5.6. Let (s1, s2) € A;;. The error of formula (5.9) we estimate

by the inequality
n—1 n—1 (o' 0)_ (a a)
ol < ZZ/ /./ w- 21’ —2 gai.mz al,_szxd‘fl doy| +
k=0 [=0 Ay (Sln % + sin 22 2)
n—1 n—1 (o- G)_ (0_ G)
" ZN / e Zxdal doa| = r +ra, (5.10)
k=0 I= Ak (Sin2 A+ sin? -2 )

where Z;l means summation over (k, /) suchthati—1 <k <i+1, 0</ <n—1
or0<k<n—1, j—1<I<j+1,and Z;c/l means summation over the other
values of (k, 1).
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Let us estimate each of the sums r; and r, separately. In addition without loss
of generality assume that [/ Ay (9(01,02) = @nn (01, 02)) doy doy > 0. Then

n—1 n—1 do do
1dos
ZZW)(GI’UZ) gann(o'l’oé)l_// 2 o1—5§ -2 op—sp \
prdenr Ay sm 51 + sin %)
n—(r+D), <1/2,
<A { nmCH s 12, G-

i+1+[(n—1)/2] j+1+[(n—1)/2] 1

rn <4 Z Z e

2 xz— sl 2 x—sp
k=it2 57, (sin + sin” 252)

X f Y (01, 02) doy dop —
Ay

i+1+[(n—1)/2] j+1+[(n—1)/2] [ 1

4 Z

2 Xx sl 2 x3—5p A
k=it+2 I=j+2 sin + sin 3 )

1
2 Xk 2 Xj41—S. A X
. —5 . —
(Sln Thalll 12 1+Sln Tl 12 2)

X / Y~ (01, 02) doy dop
Ay

= r + o, (.12)
where ¥ (01, 02) = ¢(01, 02) — @un (01, 02),
+ _ w(O_I’O_Z)’ ifW(Ul,Uz) 2 0
yrlon o) = {o, if ¥ (01, 03) < O;
o 00 {o, if ¥ (o1, 02) = 0
01, 07) =
P —w(on,02), if (o1, 00) <O,

It is obvious
i+14+[(n—1)/2] j+1+[(n—1)/2] 1

4 2. ; Taa
(sm x" =1 4 sin x’?z)

k=i+2 I=j+2
_ 4o 2w doy da2
 4z? 201 4 gn2 02\t
(sin® % + sin* %)

Let us estimate the 1ntegral

= // Y (o1, 07) doy doy
Au

< ‘/ /(ﬁﬁ(m,ﬁz)—%(01,02))(101(102 +
Ay

(5.13)

+ =i+ i (5.14)

/ (@n(01, 02) — @pn(01, 02)) doy dor
Ay

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



308 ILYA V. BOIKOV AND ALEXANDER G. RAMM

Since the expressions i; and i, are estimated similarly, we estimate only i;. One
has:

X141
f (p(s1,02) — @u(s1, 02)) dos|.

X1

i} < — max
51

This integral is a continuous function of s;, which attains its maximum at a point

s*, and
27-[ X1+1
i1 < — f (@(s*, 02) — (5™, 02)) do
X
27-[ 1+1
<) W06 o) G — o)
B (x —x)r
_Z l(jr _l+i S (x4 — 02) 7! doy
2 [ By (x; —Xl)i‘
< T (X141 —02)" — Z Er _+11 (141 — 02) 7 doy
2 X141 4 - r+2
= — |Rr1(02)|doy < ———| — R (D). (5.15)
rln Jy r+ D!\ n

From inequalities (5.14) and (5.15) one gets:

8 - r+2
lg(r-l—l)!(;) R (D)

and
240 (7\" e 2m do do
21 < m(-) er(l)ff o ! _22 v (5.16)
r -\ 0 Jo (sm 5 +sin 7)
One has:
Fyy = o(n_’). (517)

Estimate (5.17) follows from the inequalities:
‘ _// ¥~ (01, 02) doy do
A

i+1+[(n—1)/2] j+1+[(n—1)/2]

2

< f fA (o1, 091doydoy = O

and

1

22 xp—5)1 s 2 x—sy\ A
(sm == + sin == )

i.:JH_,}L:\:J}u Zy L—$ I
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1

. — . —sH\ A
(s1n2 Xk+£ S1 + st Xz+12 52)

n A< 1/2,

k—-—D4+Ud-))
< An? < logn, *=1/2,
n ZZ((k—i)z—l—(l—j)%“‘l ¢ nzogn /
kol n*, A > 1/2.

The estimate
27" Ryy (1)
4+ D!t — L+ [Ra (DY)

follows from inequalities (5.10), (5.11), (5.16), and (5.17).
Theorem 5.5 follows from the comparison of the values ¢,,[¥] and R,,[¥]. O

Ry (W) < (14 0(1))

Let us construct cubature formulas for calculating integrals K f on classes of
functions W7 (1). These formulas will be less accurate than the ones in Theo-
rem 5.3, but they will be optimal with respect to order, and easier to apply.

First, we investigate the smooth function

w(tl,tz)thfzn : f(m, n)dndn
o Jo (sin

2 11—h 2 To—1th A
20+ sin® 252)

assuming f(#, ) € wrr, Changing the variables 1 = 1y — 1, 7, = 7, — ¢, in the
last integral, one gets:

2w p2m
t, ) dr d
wtl,tz):/ fo+n o+ n)dndn
0 JO

(sin2 %‘ + sin? %)k

Thus, ¥ (f,, &) € W',

Remark. It is known [2] that Kolmogorov and Babenko widths on the class of
functions W"” (1) are equal to §,(W"" (1)) < d,(W""(1), C) < 1/n’/2. Hence the
recovery of the function ¥ (¢, #;) using n functionals is not possible with accuracy
greater than O(1/n"/%). More precise conclusions are obtained in Theorems 5.3
and 5.4.

Thus, for recovery of a function ¥ (¢, 1), (t1, &) € [0, 27]* with the accuracy
O(n="/%), it is sufficient to calculate the value of the function v (;, ) at the nodes
(vk, v1), where vy = 2kn /N, k,1 =0,1,..., N, and N> = n, and to use the local
spline ¢y (¢, t2) of degree r with respect to each variable.

Let us describe the construction of such spline.

Assume for simplicity that M := N/r is an integer, and cover the domain
[0, 27]? with the squares Ay = [wg, w;], k,] = 0,1,..., M — 1, here w, =
2kn/M, k = 0,..., M. Approximate the function ¢ (¢, f;) in each domain Ay

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com
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by the interpolation polynomial vy (f1, 2, Ay) constructed on the nodes (xf, x}),

i,j=01,....nxf=we+Zi, i=0,1,....r
Denote the local spline, which is defined by the polynomials ¥y (¢1, 2, Ag), by
Yn(ty, 2).

If the values (v, v;) are calculated by formula (5.9) with the accuracy
O(rn~"/?), then

¥ (11, 12) — Y (ts, )lle < O3,

Therefore the spline iy (#1, #;) is optimal with respect to order, and a method for
recovery of the function v (¢;, t,) which has the error O(n~"/ 2) (in the sup-norm)
is constructed.

6. Optimal Methods for Calculating Integrals of the Form 7 f
6.1. LOWER BOUNDS FOR THE FUNCTIONALS {,,, AND {y

First we get a lower bound for the error of formula (2.1) with p; = p, = 0 and
ny = ny = n, on Holder classes.

THEOREM 6.1. Let W = H,,(D), and calculate the integral Tf by formula (2.1)
with ny = ny, = n and p1 = p> = 0. Then the estimate:

(14 0(1)) de, dty
nl¥1= 320 +a>na/ / @ ©D

holds.
Proof. Let n > 0 be an integer, L = [n/logn]. Let v := —14+2k/L, k =
0,1,..., L.By (&, n;) we denote a set which is the union of nodes (x;, y;), i, j =

1,2,...,n of formula (2.1) and the nodes (v;, v;), i, j = 1,2,..., L. Let Ay =

[ve, vesrs v vl &, 0 =0,1,..., L —1.Let O < ¥ (f1, 1) € Hyo(D), where

D =]-1, 1]2,Vanishing atthenodes (&, 1), kK, =0,1,... N,where N = n+L.
Consider the integral

(T)(vi, vy)
f / Y (11, 1) dr drp
1 ((t = v)? 4+ (= v)H)*

L—-1L-1 L—-1 j-1 i—1 L—-1 i—1 j-1
-(ZX+ i+ rery)-
k=i l=j k=i [=0 k=0 I=j k=0 =0

y / ¥ (t, »)dndn
Ay (T —v)?2 + (1 — v))H*

L—i—1L—j-1 I 2 |
o> <5) ((k+ D2+ (1 + D> f/A;m,H,- ¥ (11, ) dr dn +

k=0 =0
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1

< 1
2 <2) ((k+ D2+ (I + DH* / fA ¥ (@) du dz +

=0

Loj=l /p\ 2 |
(5) ((k+ D2+ (1 + D> //Ai_k_l,m Y (T, ) drdn +

n |
= (5) ((k+ D2+ (I + D) f/Ai_k_LH_l Y (11, 1) dr dra

()”U@ i—1-RU@L—j—1-D

|

L
+

i—1

EPﬂ

i

+

+
Mn ||M: OM

~|I

purde ((k+ 1D+ (+ DH*

X f/ Y (11, 1) drydry +
Akil+j

i, 2AUL-i—1=-UG—1=1)
+ZZ<) Gr 2+ a+ Dy

k=0 [=0

X _/_/ Y (11, ) dry drp +
Agti,j—i—-1

e 2UG=1—-UL—j—1=1)
+ 23 (5) sy

k=0 [=0

X ff Y (11, 1) dry drp +
Ai—k,j+i

L-1L-1

2UG—1-UG—1-1)
- Z Z <2) ((k + 1)2 + (l + 1)2))L w/:/;i_k_l,j—l_l w(tl’ TZ) d‘El de.

k=0 [=0

0

Here U(k) = 1fork > 0,and U (k) =0 for k < O.
Averaging the above inequality over alli and j, i, j =0, 1,..., L —1, one gets:

Rnn(qj Pkis Xk, )’1)
L—1L-1

> Y S TG )
i—0 =0
| L-1L-1 g
U(L—i—1-k
Lz 2x22x§;((k+1)2+(1+ )2)k|:l —0 j=0 ( l ) X

xU(L—j—l—l)// (T, ) drydo +
Agtitj

L—1L-1
+§:§:U@—w—l—kﬂK]—l—D[/ (11, ©)dn do +
i=0 j=0 Apyij-1-1
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L—1L-1

+ U(l—l—k)U(L—]—l—l)ff ¥ (t, 1) drydo, +
i=0 j=0 i—k—1,j+
L—1L-1

+ U@—l—@Uo—l—bff ¥ (nr, ) dry dra
iz0 j—=0 ik—1,j—1—1

1 L-1L-
LZ 20922 Z
k=0

Vp—-i-2 vi_r—2 1
+ff ¥ (T, 1) dry drz+f Y (11, )dr dn +
v —1

1
1
— (k+ D>+ + DD

1 p1
[/ Y (11, »)dridn +
v vy

I=

—1 v,
VL_k—2 VL—1-2 :
+ f f ¥ (1, ) dry de]
| Lol )
, )drd 6.2
= 2x22;\kz(;l ~ ((k+1)2+(l+1)2)'\/ / ¥ (1, 1) dry doa. (6.2)

From inequality (6.2) it follows that

S Hoo (D)]
| L—1L-1
(Hm%mwzzwlwf/memz
=1 i=1
1-|-o(1)f / dny dr, f /
= 71, T2) d7y d1s. 6.3
1% crir L _11#(1 2)dndn, (6.3)
From Theorem 4.2 and Lemma 4.4 it follows that the inequality
It 4 1
yn)dndn 2 —— 6.4
f_lf_lw(tlrz) ndn, 2 T ane 6.4)
is valid for an arbitrary vector of the weights and the nodes (X, Y, P) on the class
Hyo (D).
Theorem 6.1 follows from inequalities (6.3) and (6.4). O

THEOREM 6.2. Let ¥ = C5(1), and calculate the integral T f by formula (2.1)
with py = p2 = 0. If ny = ny = n, then

-/ / dSl dSz
2”( L (D) + )

where K, is the Favard constant.
Proof. Let

Y (s1, 52) = ¥1(s1) + Pa(s2),

GnW1 2 (1 + o) 5 ——
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where 0 < ¥(s) € W'(1), vanishes at the nodes x;, k = 1,2,...,n,and 0 <
Yo (s) € W' (1) vanishes at the nodes yi, k =1,2,.
For arbitrary nodes x;, k = 1,2, ..., n, one has (see [21]):

! 2K,
/ Yi(s)ds > , i=1,2.
-1

(n)”
Thus the inequality

1 1 SK,«
// Y(s1, 52) dsydsy >
—1J-1 (Zn)”

holds for arbitrary nodes (x, ..., x,) and (y1,..., Yn)-

Theorem 6.2 follows from this estimate and inequality (6.3). O
THEOREM 6.3. LetV = W;”(l), r=12,..., 1 < p < oo, and calculate the
integral T f by formula (2.1) with py = p, = r — 1 and ny = ny = n. Then the
estimate
Ennl W]

2V4R, . (1) dsy ds;
> (1 1 4 , (6.5
= (1+0o( ))22)\r!(rq + 1)1/q(n — 1+ [qu(l)]l/r)r / / (Sl Z)A (6.5)

holds, where R,,(t) is a polynomial of degree r, least deviating from zero
in Ly([—1, 1]).

Proof. Let L = [n/logn]. Consider the nodes (v, v;), vy = 2k/L,k,l =
0,1,...,L — 1. By (§,n;),i,j = 0,1,...,N —1, N = n + L denote the
union of the nodes (xi, y;) and (§;, &;). Let ¥ (s1,50) = ¥1(s1) + ¥a(s2), where
0 < Yq(s) € W[’,(l) vanishes with its derivatives up to order r — 1 at the nodes
E&,1=0,1,...,N—=1,and 0 < ¢ (s) € W[’,(l) vanishes with its derivatives up
to order r — 1 at the nodes n;, j =0,1,..., N — 1. Assume that f;:”l Yi(s)ds >
0,i=0,1,...,N — 1,andfv’;f+1 Ya(s)ds >0, j=0,1,..., N —1.

Using the argument similar to the one in the proof of Theorem 6.1, one gets:

Enn (W, pris vk, vp)
| Lo1i-

2 ZT(lﬁ)(vi, v;)

2

1
Z T L2 2A22A Z Z ((k + 1)2 +(+ )2);“ / f Y (11, 1) drp d7y

k=0 =0

1+ o(1) dn, d,
=~ 4.0 / /1 (tl —li-tzz))" -/1/—1 ¥ (71, 12) d71 da. (6.6)

From Theorem 4.1 and Lemma 4.4 it follows that the inequality

1 221/aR, (1)
/_lf_l v m)dndn > (o) e 1+ Ry (D179

6.7
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is valid for arbitrary weights and the nodes (X, Y, P) on the class Hy, (D).
Theorem 6.3 follows from inequalities (6.6)—(6.7). O

6.2. CUBATURE FORMULAS

Let us construct a cubature formula for calculating the integral 7 f on the Holder
class Hyo(D). Let xp := —1+2k/n, k=0,1,...,n, x, = (01 +x0)/2, k =
0, 1,...,71 - l,and Akl = [xk,xk+1;xl,xl+1], k,l =0, 1,...,71 — 1.

Calculate the integral 7 f by the formula

n—1 n—1 d d
Tf=> > flxx) ff nen FR.(f). (68

=0 1=0 an (M = 1)? + (1 — )

Consider another cubature formula for calculating the integral 7 f.
Let (#1, 1) € A;j. By A, denote the union of the square A;; and of those squares
Ay which have common points with the A;;. Consider the formula

_ o, dry doy
If = Jfx.xp) /-/A (@ -2+ @

n—1 n—1
Ce drdn
+ 3 3re ff (& =0+ (@ =y T Rl (69

k=0 [=0 An

where 5 ' means summation over the squares which do not belong to A,.

THEOREM 6.4. Among all cubature formulas (2.1) with p1 = p» = 0 and n; =
ny = n, formula (6.8), with the error estimate (6.15), is optimal with respect to
order.

Remark. Similar statement holds for formula (6.9).

Proof of Theorem 6.4. Let us estimate errors of formulas (6.8) and (6.9).
The error of formula (6.8) can be estimated as follows:

n—1 n—1 -
Cff @) = FGh )
RuDI < 2,2 /f (@ -0+ @ —nyy T

k=0 =0 Au
n—1 n—1
Lf (@1, 72) = £ x)
" ’ f/ dr dt
;; ay (=024 (=)
ST (6.10)

where YY" means summation over k and [ such that the squares Ay, belong to
" .
A, and ) )" means summation over the other squares.
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Let us estimate r; and r,:

2 dry dry ¢ .

ne < = o(n™%); 6.11

n® /~/A* ((tl - tl)2 + (Tz - I2)2))‘- n2—2x+a O(n ) ( )
n—1 n—1

ST+a n2+a DD h(dw). (6.12)
k=0 [=0

Here 4 (Ay;) denotes the maximum value of the function ((t; — )% + (v, — £2)>) ™
in the square Ay;.
One has:

1
‘ ‘/:/;kl |:(('51 - tl)z + (1 — 1‘2)2))L - h(Akl)] drdn

1 1
/ fA [((n “hr T (m—n) () + (- rzw] da de
< f/ 200 — 1y + qi(11 — x) (11 — X))
S Mg (G =t 4+ qi (1 — 0))? + (12 — 1)?)HH!
+ ff 20(x; — ty + q2(12 — x) (T2 — 7))
an | (e = 1) + (x; — &2 + @2 (12 — x))D)*

< ‘ff 2)\.(1’1 —Xk) dr d n
= 71 dT
ay (G =t + q(t1 — X)) + (1 — ) D)MH1/2 1852

‘ f/ 2x(1 — x) o d
7 dz
Ay (T — 1) + (X1 f+ qa(ty — x )22 2
2k+1 1

§ n3 (k2 + 12)x+1/2 nz-zx (kz + 12)x+1/2’

where it was assumed that £ > i + 1, and [ > j + 1. Estimates for the other
combinations of k and [ are simllar. Thus:

drydn| +

d‘L’l dT2

n—1 n—1

drdn
"
r +
S aF a) ne ;) ZZ(; / /A (1 — 1) + (12 — 1))
n—1 n—1
R Z Z " (6.13)
2—2ata F2 1 [2AF12°
(1+a)n akozo(k_'_l) /
Let us estimate the last term in the above inequality.
One has:
n—1 n—1 n/2 n/2
2.2 <2
(k2 1 [2yA+1/2 (k2 4 [2\A+1/2
k=0 1=0 (k +l) / k=—[n/2] I= [n/Z](k +l) /
1, A>1/2,
< ¢4 logn, A=1/2, (6.14)

n' =2 a < 1/2,
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where >~ > * means summation over k and I, (k, 1) # (0, 0).

In deriving (6.14) we have used the known result ([10], Theorem 56) which
says that a number of points with integer-value coordinates, situated in the circle
x2 +y? =r?, is equal to 7% + O(r).

From inequalities (6.13) and (6.14) it follows that

n—1 n—1

(1+o(1)) 1 ., dr, dr,
S Tt w2 / ap (T — 1)+ (12 — )2

k=0 [=0

This and (6.11) yield:

L+o(l) / / dr dry
o D] < (14 a)ne 1, tz)eD 1 (1 —t)? + (. — )H*

14+o0(D) dridrm
1
(1 +a)n“/ / (2 + 2 15

Theorem 6.4 follows from a comparison the estimates of ¢[H, ,(D)] and
Rn.n.[Ha,a(D)]* O

Let us construct asymptotically optimal cubature formula for calculating inte-
grals Tf on the classes W’". In the derivation of formula (5.9) the local spline
(11, 1), approximating the function ¢(t;, #,) in the domain [0, 2r; 0, 2], was
constructed. A spline f,,, (¢, t2), approximating the function f (¢, ;) in the domain
[—1, 1] x [—1, 1], can be constructed analogously. Calculate the integral 7 f by the
formula

— bt Jan (11, 1) dT1 d12
=] [ @ e (6.16)

THEOREM 6.5. Let ¥ = W™ (1), r = 1,2,..., and calculate the integral T f
by formula (2.1) with py = p» =r — 1, and ny = ny = n. Then cubature formula
(6.16), which has the error

2er(1) df]dfz
RM(W)<<1+°<1))<r+1>z(n_1+[Rr1<1>]1/r>r/ f L@+ )Y

is optimal with respect to order. Here R,,(t) is a polynomial of degree r, least
deviating from zero in Ly([—1, 1]).

As in the proof of the Theorem 5.6 one gets the following estimate
2R, (1 drdr
Run(W) < (1 +0(1)) O [ [ e
(r+ D — 1+ [R (DY) 1 (f + Y

Comparing this estimate with the estimate of ¢, [W""(1)] from Theorem 6.3
one finishes the proof. O
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7. Calculation of Weakly Singular Integrals on Piecewise Continuous
Surfaces

In Sections 5 and 6 asymptotically optimal methods for calculating weakly singular
integrals defined on the squares [0, 27 ] or [—1, 1]? were constructed.

It is of interest to study optimal methods for calculating weakly singular inte-
grals on piecewise-Lyapunov surfaces.

Consider the integral

_ f(Tl’ 72, T3) ds
7= //G (=1 + (0P + (@ mmhee 0D

where G is a Lyapunov surface of class L (B, «).

We show that the results derived in Sections 5 and 6 can be partially generalized
to the integrals (7.1).

Calculate integrals (7.1) by the formula:

nop
Jf =) prof (M) + Ru(f, G, My, prw.o), (7.2)

k=1 |v|=0

where t = (t1,t,13), v = (v, v2,v3), |v| = vy + v2 + v3, fO, 1, 85) =
Al f /011 91,01,
The error of formula (7.2) is:

Rn(f5 Gs Mk’ pkv) = Sup |Rn(f5 Gs Mka pklﬂ t)l'
teG

Assume f € V¥, and G € W,. Then the error of formula (7.2) on the classes
Y, and W, is:

Rn(\ljla qua Mka ka) = sup Rn(f5 Ga Mka pkv)'
fev,Gevy

Let

g‘n.[qlla 1112] = inf Rn(\ljla \IIZa Mk’ pkv)'
M, pro
A cubature formula with nodes M} and weights pf, is called optimal, asymp-
totically optimal, optimal with respect to order on the class of functions ¥; and
surfaces W, if

Rn(qils \D21 M]?a p;:v)
SalWh, W]
respectively.
Let ¥, = Hy(1), 0 < ¢ < 1,and ¥, = L1(B,B), 0 < B < 1. Let us

construct an optimal with respect to order method for calculating integrals (7.1) on
the classes of functions W, and surfaces W,. Let S(G) be a ‘square’ of the surface

=1,~1,x1,
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G. Divide the surface G into n parts g¢, k = 1,2, ..., n, so that a ‘square’ of each

of the domains g, has the area of order |S(G)|/n, where |S(G)| is the area of S(G).

We take a point M, in each of domains g; at the center of the domain g;.
Calculate integral (7.1) by the formula

=3 (M")/ = +R(f.G). (13)
k=1 o (11— 1?2 + (1 — )2 + (13 — 13)2)* .

THEOREM 7.1. Formula (7.3), has the error
R, (W, ¥y) < n~/?,

and is optimal with respect to order on the classes ¥, = H,, 0 < « < 1, and
W, = Lyi(B, B), 0 < B < 1, among all formulas (7.2) with p = 0.

Proof. Assume for simplicity that the surface G is given by the equation z =
@(x,y), (x,y) € Go, p(x,y) = 0. Let g (x,y) := p, ¢,(x,y) := q. Write the
integral Jf as

Jf = // f@ 9@, V14 P2, w) + ¢ (1, ) du dn
M, [ =1+ (=) + (p(t1, ) — 9t )2

The function f (7, 72, ¢ (71, 7)) belongs to the Holder class H, over Gy, and
the function /1 + p2+ g2[(t1 — t1)* + (12 — ©)* + (p(11, 1) — @(t1, B))*]* is
positive.

Let M, = (m’f, mé, m’é) be the nodes of cubature formula (7.2). Let ¢ (¢) :=
(d(z, {M})%, where d(t,{M,}) is the distance between the point T and the set
of the nodes {M,;}, where the distance is measured along the geodesics of the
surface G. This distance satisfies the Holder condition H,(1). Hence the function
¥* (11, ) = ¥ (71, 1, 9(11, 72)) belongs to the Holder class H,(A) and vanishes
at the nodes (m*, m%), k =1,2,...,n. Thus,

Cn. (\I‘Ils \1}2)

(7.4)

S 1 / // Y (t1, T2, 9(11, )V 1 + P2+ ¢*dry dra dry dy
~ S(Go) J g, Sy (T — 1)+ (12 — 1) + (p(11, T2) — 9(t1, )]
> S((l;o) 6o 1,0(1’1, T2, ¢(T] s Tz)) d'Cl d‘Cz X

71 dn)

, // V1+pr+q?
X min >
! G [(t1 —1)* + (2

d
— 1)+ (p(t1, 1) — @(t1, 1))
54 / / ds
Z w0 ] o e o

where S(Gy) is the ‘square’ of the surface Gy.
Therefore the error of formula (7.3) is estimated by the inequality R, < A/n%/2.
Theorem 7.1 is proved. O
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Remark 1. The method of decomposition of the domain G into smaller parts

g, k= 1,2,...,n, described below, is optimal with respect to order for classes
of functions ¥, = H,, 0 < «¢ < 1, and of surfaces ¥, = Lo(B, ), 0 < B < 1
for @ < B.

Remark 2. From formula (7.4) it follows that if the function f € W""(1)
and the surface G € Ls(B, @), then the function f(ty, 7, (11, 1)) € W¥"(A),
where v = min(r, s). Therefore, repeating the above arguments, one proves that
the accuracy of calculation of integral (7.4) by cubature formulas using # values of
integrand function does not exceed O(n~"/%).

From this remark it follows that if the surface G consists of several parts, for
example of surfaces G; and G, having common edge L, then it is necessary to
calculate the integrals for the surface G, and the surface G, separately. If the
surface G is divided into smaller parts gx, £ = 1,2, ..., n, the domains g, the
curve L passes inside of these domains, should be associated with the class of
surfaces Ly(B, 1). In these domains the accuracy of calculation of the integral does
not exceed than O(n;l), where n; is the number of nodes of the cubature formula
used in the domain gy.

For this reason the cusps and the nodes, in which three or more domains Gy,
which are parts of the domain G touch each other, must belong to the boundaries
of the covering domains g, k = 1,2,...,n.

The universal code for computing the capacitances, described in Section 9, is
based on optimal with respect to order cubature formulas for calculating integrals
on the classes of functions H,, 0 < « < 1 and of surfaces Lo(B,8), B =
const, « < B, B < 1.

The algorithm constructed in Section 9 is optimal on this class of surfaces and
does not require special treatment of edges and conical points of the surface.

When one studies cubature formulas on the classes W""(A), r > 1, and
Li(B,B), s 21, 0 < B <1, one has to develop a method to compute accurately
the integrals in a neighborhood of the above singular points of the surface.

8. Calculation of Weights of Cubature Formulas

In calculating weakly singular integrals by cubature formulas (6.8) it is necessary
to calculate integrals of the form of

J (l‘ t)—/ d‘L’ld‘L'z
DRI g (= )2 + (12 — 1))

for different values (7, ;) € [—1, 1]%.

Let (#1, ) € A;j. Let us consider two possibilities: (1) the square A; and the
square A;; have nonempty intersection; (2) the square Ay, is does not have common
points with the square A;;.
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First consider the second case, when the function
1
(1 — 1)+ (. — )H)*’

is smooth. Here (11, 12) € Ay, and (#1, 1) € A;j.
In this case one has:

p(t1, 1) =

F12%
S @ =0+ (- )

I¢(n1, ©)
aty

and, if the squares Ay and A;; do not have common points, one gets:

"¢(n1, ©)
oty

o’y !n2)u+r
2k

<

Similar estimates holds for partial derivative with respect to ;.
Calculate the integral Ji; (¢, t) by the Gauss cubature formula:

1
J(t,t)=/ Pmm|: ]dr dny + Ry (Ar),
S Au (=t + (-t | “

where P,,, = P;'P2, P; (i = 1,2) is the projection operator onto the set of
interpolation polynomials of degree m with nodes at the zeros of the Legendre
polynomial, which maps the segment [—1, 1] onto the segment [x;, x;41] fori = 1,
and onto the segment [x;, x;41] for i = 2.

An integer m is chosen so that |R,,| < n~>* for cubature formulas on the
Holder class H,,, and |R,,,,| < »n~"~% for cubature formulas on the class W'”.

This requirement is made because the error of calculation of the coefficients
Ju(t1, t2) must not exceed the error of formula (6.5).

Using r derivatives of the integrand in the error R,,,,(Ay;), one gets:

B,27r (2\
| Ry (Ar)| < <—) ,
m

r—1 n

where B, is the constant appearing in Jackson’s theorems. It is known that the
constants B, are bounded by a constant, denoted b, uniformly with respect to r. In
the case of periodic functions & = 1 ([14]), and in the general case b is apparently
unknown.

If r = 2 and m = B,2"r!n?*, then one gets the error estimate given for cubature
formula (6.5).

Now, consider a method for calculating the integrals Jy, (#;, t,) when the square
Ay has nonempty intersection with the square A;;. For definiteness we consider
the calculation of the integral J;; (7, ;) by the formula:

1
Jij(t1, h) = fAU Pmm|:((l,l _ t1)2 + (12 — t2)2)x +h

] dridv + Rum(Aj)),
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where & = const > 0 will be specified below.

One has:
| Ry (Aij)]
dry, dn
< h[ 2 2\ 2 24 +
Ay (M —1)* + (2 — )M (((11 — 11)* + (12 — 2))* + 1)

1
+ | D St — e
fAij |:((Tl — t1)2 + (1p — l‘z)z))‘ + h] 1472 1 5

where D,,,, = I — P, and [ is an identity operator, and

< h / dr, dn
r %
: ay (@ = 1)+ (12 — ) PD2(((7 — 11)? + (72 — t2)D)* + h)(H+P/2
2 2\ 172
< %h(“”ﬂ(%) : 8.1)
. 1
the. function ((r1—11)2+(ra—12)2)*+h
derivatives for A > 1/2, one gets:

81 B;

X a5 -
n*h2m

is infinitely smooth. Using bounds for its first

ra 8.2)

From inequality (8.1) it follows that for getting accuracy O(n~'~*) one has to
have h = n~2®+/0-% and from inequality (8.2) it follows that one has to have
m = max([n(8A+4a)/(l—k)+a—3]’ 1)

9. Iterative Methods for Calculating Electrical Capacitancies of Conductors
of Arbitrary Shapes

Numerical methods for solving electrostatic problems, in particular, calculating
capacitancies of conductors of arbitrary shapes, are of practiacl interest in many
applications. Electrostatic problems solvable in closed form are collected in [13,
17, 20]. Some of the problems were solved in closed form using integral equations,
Wiener—Hopf and singular integral equations [22]. Electrostatic problems for a
finite circular hollow cylinder (tube) were studied in [28] by numerical methods.
In [19] the variational methods of Ritz and Trefftz are discussed. Galerkin’s and
other projection methods are studied in [15]. In practice these methods are time-
consuming and variational methods in three-dimensional static problems probably
have some advantages over the grid method. There exists a vast literature on calcu-
lation of the capacitances of perfect conductors [13, 24]. In [13] there is a reference
section which gives the capacitance of the conductors of certain shapes (more
than 800 shapes are considered in [13]). In [24] and [23] a systematic exposition
of variational methods for estimation of the capacitances is given. In [26] there
are some programs for calculating the two-dimensional static fields using integral
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equations method. In monograph [25] iterative methods for solving interior and
exterior boundary value problems in electrostatics are proposed and mathemat-
ically justified. Upper and lower estimates for some functionals of electrostatic
fields are obtained in [25]. Such functionals are the capacitances of perfect con-
ductors and the polarizability tensors of bodies of arbitrary shape. These bodies are
described by their dielectric permittivity, magnetic permeability and conductivity.
They can be homogeneous or flaky. The main point is: these bodies have arbitrary
geometrical shapes.

The methods, developed in [25], yield analytical formulas for calculation of the
capacitances and polarizability tensors of bodies of arbitrary shapes with any given
accuracy. Error estimates for these formulas are obtained in [25]. We give here the
formulas for calculating the capacitances of the conductors of arbitrary shapes [25]:

n -1
C(n):4nsoSZ{E;ﬂl;n ff didt/.../w(t,tl)...w(tn_l,tn)dtl...dtn} :
rJr fst r r

n times

where S is the surface area of the surface I' of the conductor, & is the dielectric
3 1

constant of the medium, ry, := |s — t|, and ¥ (¢, s) := IN T

4 enS2 ds dt
C(O):%<C, JE// o , S =measT.
rJr Fs

It is proved in [25] that
IC —C™| < Aq", 0<gq <1,

where A and ¢ are constants which depend only on the geometry of I.

We use these formulas are used to construct the computer code for calculating
the capacitances of the conductors of arbitrary shapes.

It is proved in [25], that

-1
c®™ :4318052<// rs_tl(S,,_(t) dr ds) , ©.1)
rJr
where §, is defined by the iterative process:
Spi1 = —AS,, S =1, f Spdt = S, 9.2)
r

and A is defined by the formula:

a 1
A(S:fS(t) dr,
r 8NS zjfl"st

where N; is the outer unit normal to I" at the point s.
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To use iterative process (9.2), one has to calculate the weakly singular integral

f ®) 8NS - dt 9.3)
Let us describe the construction of a cubature formula for calculating integral (9.3),
assuming for simplicity that the domain G, bounded by the surface I', is convex.
This asumption can be removed.

Let S be the inscribed in the conductor sphere of maximal radius r*, centered
at the origin. Introduce the spherical coordinates system (r, ¢, 8), and the set of
the nodes (r*, ¢, 6;), where ¢ = 2kn/n, k = 0,1,...,n, 6, = wl/m, | =
0,1,...,m. Assume that m is even, and cover the sphere S with the spherical
triangles Ay, k=1,2,..., N, N =2n(m — 1).

Let us describe the construction of the spherical triangles. For 0 < © < 7/m
the triangles Ay, £ = 1,2,...,n have vertices (r*,0,0), (r*, ¢r—1,61), (**, ¢,
61), k=1,2,...,n

For6, <0 <61, 1=1,2,...,m/2—1, the triangles Ay, k =n+2n( —1)
+j, 1 < j < 2n are constructed as follows. The rectangle [0, 27; 6;, 6;41] is cov-
ered with the squares Ay = [¢r, Grr1: 61, 6141], K =0,1,...,n — 1. Each of the
squares Ay is divived into two equal triangles A}, and A?, k=0,1,...,n— 1,
I =1,2,...,m/2 — 1. The spherical triangles A}cl and A,Zd, k=0,1,....,n—1,
1=1,2,...,m/2 — 1, are images of triangles A}, and AZ, on the sphere S.

As aresult of these constructions the sphere S is covered with triangles Ay, k =
1,2,...,N

We draw the straight lines through the origin and vertices of the triangle Ay, k =
1,2,..., N. The points of intersection of these lines with the surface I" are vertices
of the triangle Az, k = 1,2, ..., N. As a result of these constructions the surface
I is approximated by the surface 'y consisting of triangle A, k = 1,2,..., N,
and integral (9.3) is approximated by the integral

U(s) = /I:N S(t)a—NSTt dr. 04

We fix each triangle Ay, k=1,2,..., N,and associate wﬁh itapoint t; € Ay,
k=1,2,..., N,equidistant from the vertices of the triangle Az, k =1,2,..., N.
We calculate integral (9.4) at the points 7, k = 1,2,..., N, by the cubature

formulas constructed in Sections 5-7 for the Holder classes. After calculating the
values U(t), k =1,2,..., N by these cubature the integral

-1
CM = —4rg,S?, ( f f U(t) dtds)
Iy JTy

is calculated,Nwhere U (1) = U(w) fort € Ay, k=1,2,..., N, Sy is area of the
surface 'y, CV is approximation to the value of CV). The successive iterations
are calculated analogously.
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Table I.

C n m N Exact value  Error Relative error  Calculation time
0.9 40 30 2320 12.144630 -0.221200 0.018212 25 sec

0.5 40 30 2320 10.392304 -0.222042  0.021366 25 sec

0.1 40 30 2320 85020638 -0.301189  0.035425 25 sec

0.01 40 30 2320 8.050854 0.072132  0.008959 25 sec

0.001 40 30 2320 8.005092 -0.821528  0.106374 25 sec
0.0001 40 30 2320 8.000509 -1.068178  0.133513 25 sec

0.9 50 40 3900 12.144630 -0.180510  0.014801 1 min 15 sec
0.5 50 40 3900 10.392304 -0.185642  0.017860 1 min 15 sec
0.1 50 40 3900 8.5020638 —0.288628  0.033947 1 min 15 sec
0.01 50 40 3900 8.050854 -0.372047  0.046212 1 min 15 sec
0.001 50 40 3900 8.005092 -0.586733  0.073295 1 min 15 sec
0.0001 50 40 3900 8.000509 -0.933288  0.116653 1 min 15 sec
0.9 60 S50 5880 12.144630 -0.152009 0.012516 4 min

0.5 60 50 5880 10.392304 -0.160023  0.015391 4 min

0.1 60 50 5880 8.5020638  -0.283364  0.033328 4 min

0.01 60 50 5880 8.050854 0.532250  0.061110 4 min

0.001 60 50 5880 8.005092 -0.391755  0.048939 4 min
0.0001 60 50 5880 8.000509 —0.880394  0.110042 4 min

10. Numerical Examples

In this section the numerical results are given. As an example we calculated the
capacitances of various ellipsoids, because for ellipsoids one knows ([17]) the
analytical formula for the capacitance, which makes it possible to evaluate the
accuracy of the numerical results. Consider the ellipsoid:

2 2 2
X y Z
Stpta=1

It is known [13, 17] that the exact value of the capacitance of ellipsoid with a = b
is:

c— 4 egy/(a? — ¢?)

arccos(c/a)

Leta = b =1, and &g = 1. We have calculate the capacitance C for different
values of the semiaxis c. The results of the calculations are given in Table L.

It is known ([25], p. 43), that the capacitance of a metallic disc of radius a
is C = 8agy, and one can see from Table I, that asymptotically, as ¢ — 0, this
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formula can be used practically for the ellipsoids with ¢ < 0.001 with the error
about 0.005.
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